2,917 research outputs found

    TreeGrad: Transferring Tree Ensembles to Neural Networks

    Full text link
    Gradient Boosting Decision Tree (GBDT) are popular machine learning algorithms with implementations such as LightGBM and in popular machine learning toolkits like Scikit-Learn. Many implementations can only produce trees in an offline manner and in a greedy manner. We explore ways to convert existing GBDT implementations to known neural network architectures with minimal performance loss in order to allow decision splits to be updated in an online manner and provide extensions to allow splits points to be altered as a neural architecture search problem. We provide learning bounds for our neural network.Comment: Technical Report on Implementation of Deep Neural Decision Forests Algorithm. To accompany implementation here: https://github.com/chappers/TreeGrad. Update: Please cite as: Siu, C. (2019). "Transferring Tree Ensembles to Neural Networks". International Conference on Neural Information Processing. Springer, 2019. arXiv admin note: text overlap with arXiv:1909.1179

    Biomechanics (Chapter 9)

    Get PDF
    Biomechanics is a discipline. A discipline deals with understanding, predicting, and explaining phenomena within a content domain, and biomechanics is the study of the human body in motion. Kinesiology, the parent discipline of biomechanics, is a science that investigates movement. Biomechanical research in human development focuses on evaluating essential movement patterns across the human life span. Biomechanical analysis is specifically important in quantifying the developmental motor skills and movement patterns such as walking, kicking, jumping, throwing, and catching. Biomechanical research also involves studying the movement patterns of injured and disabled people. Forensic biomechanists are invited to analyze evidence, clarify some of the most important issues, and facilitate the decisions of the jury. Motion recording devices use optical lenses to capture body motion and provide permanent recorded images of movement that can be evaluated with more precision than perception with the naked eye alone

    A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design

    Get PDF
    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort

    Secretome Analysis of Skeletal Myogenesis Using SILAC and Shotgun Proteomics

    Get PDF
    Myogenesis, the formation of skeletal muscle, is a multistep event that commences with myoblast proliferation, followed by cell-cycle arrest, and finally the formation of multinucleated myotubes via fusion of mononucleated myoblasts. Each step is orchestrated by well-documented intracellular factors, such as cytoplasmic signalling molecules and nuclear transcription factors. Regardless, the key step in getting a more comprehensive understanding of the regulation of myogenesis is to explore the extracellular factors that are capable of eliciting the downstream intracellular factors. This could further provide valuable insight into the acute cellular response to extrinsic cues in maintaining normal muscle development. In this paper, we survey the intracellular factors that respond to extracellular cues that are responsible for the cascades of events during myogenesis: myoblast proliferation, cell-cycle arrest of myoblasts, and differentiation of myoblasts into myotubes. This focus on extracellular perspective of muscle development illustrates our mass spectrometry-based proteomic approaches to identify differentially expressed secreted factors during skeletal myogenesis

    Knockdown of piRNA pathway proteins results in enhanced Semliki forest virus production in mosquito cells

    Get PDF
    The exogenous siRNA pathway is important in restricting arbovirus infection in mosquitoes. Less is known about the role of the PIWI-interacting RNA pathway, or piRNA pathway, in antiviral responses. Viral piRNA-like molecules have recently been described following infection of mosquitoes and derived cell lines with several arboviruses. The piRNA pathway has thus been suggested to function as an additional small RNA-mediated antiviral response to the known infection-induced siRNA response. Here we show that piRNA-like molecules are produced following infection with the naturally mosquito-borne Semliki Forest virus in mosquito cell lines. We show that knockdown of piRNA pathway proteins enhances the replication of this arbovirus and defines the contribution of piRNA pathway effectors, thus characterizing the antiviral properties of the piRNA pathway. In conclusion, arbovirus infection can trigger the piRNA pathway in mosquito cells, and knockdown of piRNA proteins enhances virus production

    Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles

    Full text link
    The construction of sections of bundles with prescribed jet values plays a fundamental role in problems of algebraic and complex geometry. When the jet values are prescribed on a positive dimensional subvariety, it is handled by theorems of Ohsawa-Takegoshi type which give extension of line bundle valued square-integrable top-degree holomorphic forms from the fiber at the origin of a family of complex manifolds over the open unit 1-disk when the curvature of the metric of line bundle is semipositive. We prove here an extension result when the curvature of the line bundle is only semipositive on each fiber with negativity on the total space assumed bounded from below and the connection of the metric locally bounded, if a square-integrable extension is known to be possible over a double point at the origin. It is a Hensel-lemma-type result analogous to Artin's application of the generalized implicit function theorem to the theory of obstruction in deformation theory. The motivation is the need in the abundance conjecture to construct pluricanonical sections from flatly twisted pluricanonical sections. We also give here a new approach to the original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi to a simple application of the standard method of constructing holomorphic functions by solving the d-bar equation with cut-off functions and additional blowup weight functions

    The Influence of Visual Perception of Self-Motion on Locomotor Adaptation to Unilateral Limb Loading

    Get PDF
    Self-perception of motion through visual stimulation may be important for adapting to locomotor conditions. Unilateral limb loading is a locomotor condition that can improve stability and reduce abnormal limb movement. In the present study, the authors investigated the effect of self-perception of motion through virtual reality (VR) on adaptation to unilateral limb loading. Healthy young adults, assigned to either a VR or a non-VR group, walked on a treadmill in the following 3 locomotor task periods—no load, loaded, and load removed. Subjects in the VR group viewed a virtual corridor during treadmill walking. Exposure to VR reduced cadence and muscle activity. During the loaded period, the swing time of the unloaded limb showed a larger increase in the VR group. When the load was removed, the swing time of the previously loaded limb and the stance time of the previously unloaded limb showed larger decrease and the swing time of the previously unloaded limb showed a smaller increase in the VR group. Lack of visual cues may cause the adoption of cautious strategies (higher muscle activity, shorter and more frequent steps, changes in the swing and stance times) when faced with situations that require adaptations. VR technology, providing such perceptual cues, has an important role in enhancing locomotor adaptation

    Stroke Survivors Control the Temporal Structure of Variability During Reaching in Dynamic Environments

    Get PDF
    Learning to control forces is known to reduce the amount of movement variability (e.g., standard deviation; SD) while also altering the temporal structure of movement variability (e.g., approximate entropy; ApEn). Such variability control has not been explored in stroke survivors during reaching movements in dynamic environments. Whether augmented feedback affects such variability control, is also unknown. Chronic stroke survivors, assigned randomly to a control/experimental group, learned reaching movements in a dynamically changing environment while receiving either true feedback of their movement (control) or augmented visual feedback (experimental). Hand movement variability was analyzed using SD and ApEn. A significant change in variability was determined for both SD and ApEn. Post hoc tests revealed that the significant decrease in SD was not retained after a week. However, the significant increase in ApEn, determined on both days of training, showed significant retention effects. In dynamically changing environments, chronic stroke survivors reduced the amount of movement variability and made their movement patterns less repeatable and possibly more flexible. These changes were not affected by augmented visual feedback. Moreover, the learning patterns characteristically involved the control of the nonlinear dynamics rather than the amount of hand movement variability. The absence of transfer effects demonstrated that variability control of hand movement after a stroke is specific to the task and the environment

    On the cohomology of pseudoeffective line bundles

    Full text link
    The goal of this survey is to present various results concerning the cohomology of pseudoeffective line bundles on compact K{\"a}hler manifolds, and related properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in the case where the curvature is merely semipositive in the sense of currents, and the base manifold is not necessarily projective. In this situation, one can still obtain interesting information on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained a general K{\"a}hler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1,1)-currents, based on the use of Bergman kernels, and the related intersection theory of currents. Another important ingredient is the recent proof by Guan and Zhou of the strong openness conjecture. As an application, we discuss a structure theorem for compact K{\"a}hler threefolds without nontrivial subvarieties, following a joint work with F.Campana and M.Verbitsky. We hope that these notes will serve as a useful guide to the more detailed and more technical papers in the literature; in some cases, we provide here substantially simplified proofs and unifying viewpoints.Comment: 39 pages. This survey is a written account of a lecture given at the Abel Symposium, Trondheim, July 201
    corecore